If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+30x+7=0
a = 3; b = 30; c = +7;
Δ = b2-4ac
Δ = 302-4·3·7
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-4\sqrt{51}}{2*3}=\frac{-30-4\sqrt{51}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+4\sqrt{51}}{2*3}=\frac{-30+4\sqrt{51}}{6} $
| X+7x=4x | | 3m+12-m=74 | | v-1+5v=-19 | | (2+7f)(5)= | | A/2=m-1/8 | | 12+x=12-x | | 2x=-30+5x= | | -4(-3-4p)-4(p+4)=8+5p+2p+3 | | 11/5x+2/5=6x-10 | | (1+6k)(5)= | | 180=3x+5x+4x | | -7/8y=21/64 | | 6^2x=36^2x+1 | | (3z+1)(2)= | | 64^x+1=512^x | | 6a-25=95 | | 12+14m=7m+40 | | x+5=8x-4 | | -6x-6(2x+16)=30 | | 2(2+6p)= | | 2^(4x-6)=15 | | 3x2+13x+12=0 | | 3(5-3x)=2(3x-5) | | 21=-3r+1-7r | | 9^-4=81^3x | | 180=72+5x+4x | | -3+4(-3x+1)=61 | | 2(5+7j)= | | 4x+10=2x-12 | | 3x+2x+7-2=15 | | 8n-7=65 | | 28+7x+5=180 |